Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Vet Microbiol ; 291: 110016, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340553

ABSTRACT

African swine fever virus (ASFV) is a large, double-stranded DNA virus that causes a fatal, contagious disease specifically in pigs. However, prevention and control of ASFV outbreaks have been hampered by the lack of an effective vaccine or antiviral treatment for ASFV. Although ASFV has been reported to adapt to a variety of continuous cell lines, the phenotypic and genetic changes associated with ASFV adaptation to MA-104 cells remain poorly understood. Here, we adapted ASFV field isolates to efficiently propagate through serial viral passages in MA-104 cells. The adapted ASFV strain developed a pronounced cytopathic effect and robust infection in MA-104 cells. Interestingly, the adapted variant maintained its tropism in primary porcine kidney macrophages. Whole genome analysis of the adapted virus revealed unique gene deletions in the left and right variable regions of the viral genome compared to other previously reported cell culture-adapted ASFV strains. Notably, gene duplications at the 5' and 3' ends of the viral genome were in reverse complementary alignment with their paralogs. Single point mutations in protein-coding genes and intergenic regions were also observed in the viral genome. Collectively, our results shed light on the significance of these unique genetic changes during adaptation, which facilitate the growth of ASFV in MA-104 cells.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , Swine , Animals , Genome, Viral , Gene Deletion , Disease Outbreaks , Swine Diseases/epidemiology
2.
PLoS One ; 18(11): e0292833, 2023.
Article in English | MEDLINE | ID: mdl-37922253

ABSTRACT

The innate immune response is a first-line defense mechanism triggered by rabies virus (RABV). Interferon (IFN) signaling and ISG products have been shown to confer resistance to RABV at various stages of the virus's life cycle. Human tetherin, also known as bone marrow stromal cell antigen 2 (hBST2), is a multifunctional transmembrane glycoprotein induced by IFN that has been shown to effectively counteract many viruses through diverse mechanisms. Here, we demonstrate that hBST2 inhibits RABV budding by tethering new virions to the cell surface. It was observed that release of virus-like particles (VLPs) formed by RABV G (RABV-G VLPs), but not RABV M (RABV-G VLPs), were suppressed by hBST2, indicating that RABV-G has a specific effect on the hBST2-mediated restriction of RABV. The ability of hBST2 to prevent the release of RABV-G VLPs and impede RABV growth kinetics is retained even when hBST2 has mutations at dimerization and/or glycosylation sites, making hBST2 an antagonist to RABV, with multiple mechanisms possibly contributing to the hBST2-mediated suppression of RABV. Our findings expand the knowledge of host antiviral mechanisms that control RABV infection.


Subject(s)
Rabies virus , Rabies , Humans , Rabies virus/physiology , Rabies/prevention & control , Glycosylation , Asparagine/metabolism , Cysteine/metabolism , Dimerization , Virus Release , Bone Marrow Stromal Antigen 2/genetics , Antigens, CD/metabolism , GPI-Linked Proteins/metabolism
3.
Front Cell Infect Microbiol ; 13: 1215205, 2023.
Article in English | MEDLINE | ID: mdl-37692167

ABSTRACT

Background: Rabies is a highly fatal infectious disease that poses a significant threat to human health in developing countries. In vitro study-based understanding of pathogenesis and tropism of different strains of rabies virus (RABV) in the central nervous system (CNS) is limited due to the lack of suitable culture models that recapitulate the complex communication pathways among host cells, extracellular matrices, and viruses. Therefore, a three-dimensional (3D) cell culture that mimics cell-matrix interactions, resembling in vivo microenvironment, is necessary to discover relevant underlying mechanisms of RABV infection and host responses. Methods: The 3D collagen-Matrigel hydrogel encapsulating hiPSC-derived neurons for RABV infection was developed and characterized based on cell viability, morphology, and gene expression analysis of neuronal markers. The replication kinetics of two different strains of RABV [wild-type Thai (TH) and Challenge Virus Standard (CVS)-11 strains] in both 2D and 3D neuronal cultures were examined. Differential gene expression analysis (DEG) of the neuropathological pathway of RABV-infected 2D and 3D models was also investigated via NanoString analysis. Results: The 3D hiPSC-derived neurons revealed a more physiologically interconnected neuronal network as well as more robust and prolonged maturation and differentiation than the conventional 2D monolayer model. TH and CVS-11 exhibited distinct growth kinetics in 3D neuronal model. Additionally, gene expression analysis of the neuropathological pathway observed during RABV infection demonstrated a vast number of differentially expressed genes (DEGs) in 3D model. Unlike 2D neuronal model, 3D model displayed more pronounced cellular responses upon infection with CVS-11 when compared to the TH-infected group, highlighting the influence of the cell environment on RABV-host interactions. Gene ontology (GO) enrichment of DEGs in the infected 3D neuronal culture showed alterations of genes associated with the inflammatory response, apoptotic signaling pathway, glutamatergic synapse, and trans-synaptic signaling which did not significantly change in 2D culture. Conclusion: We demonstrated the use of a hydrogel-based 3D hiPSC-derived neuronal model, a highly promising technology, to study RABV infection in a more physiological environment, which will broaden our understanding of RABV-host interactions in the CNS.


Subject(s)
Induced Pluripotent Stem Cells , Rabies virus , Rabies , Humans , Hydrogels , Neurons
4.
J Transl Med ; 21(1): 543, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37580725

ABSTRACT

BACKGROUND: The ventral tegmental area (VTA) contains heterogeneous cell populations. The dopaminergic neurons in VTA play a central role in reward and cognition, while CamKIIα-positive neurons, composed mainly of glutamatergic and some dopaminergic neurons, participate in the reward learning and locomotor activity behaviors. The differences in brain-wide functional and structural networks between these two neuronal subtypes were comparatively elucidated. METHODS: In this study, we applied a method combining Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and fMRI to assess the cell type-specific modulation of whole-brain neural networks. rAAV encoding the cre-dependent hM3D was injected into the right VTA of DAT-cre or CamKIIα-cre transgenic rats. The global brain activities elicited by DREADD stimulation were then detected using BOLD-fMRI. Furthermore, the cre-dependent antegrade transsynaptic viral tracer H129ΔTK-TT was applied to label the outputs of VTA neurons. RESULTS: We found that DREADD stimulation of dopaminergic neurons induced significant BOLD signal changes in the VTA and several VTA-related regions including mPFC, Cg and Septum. More regions responded to selective activation of VTA CamKIIα-positive neurons, resulting in increased BOLD signals in VTA, Insula, mPFC, MC_R (Right), Cg, Septum, Hipp, TH_R, PtA_R, and ViC_R. Along with DREADD-BOLD analysis, further neuronal tracing identified multiple cortical (MC, mPFC) and subcortical (Hipp, TH) brain regions that are structurally and functionally connected by VTA dopaminergic and CamKIIα-positive neurons. CONCLUSIONS: Our study dissects brain-wide structural and functional networks of two neuronal subtypes in VTA and advances our understanding of VTA functions.


Subject(s)
Magnetic Resonance Imaging , Ventral Tegmental Area , Rats , Animals , Ventral Tegmental Area/diagnostic imaging , Ventral Tegmental Area/physiology , Magnetic Resonance Imaging/methods , Brain , Dopaminergic Neurons/physiology
5.
Neuroimage ; 258: 119402, 2022 09.
Article in English | MEDLINE | ID: mdl-35732245

ABSTRACT

A mammalian brain contains numerous neurons with distinct cell types for complex neural circuits. Virus-based circuit tracing tools are powerful in tracking the interaction among the different brain regions. However, detecting brain-wide neural networks in vivo remains challenging since most viral tracing systems rely on postmortem optical imaging. We developed a novel approach that enables in vivo detection of brain-wide neural connections based on metal-free magnetic resonance imaging (MRI). The recombinant adeno-associated virus (rAAV) with retrograde ability, the rAAV2-retro, encoding the human water channel aquaporin 1 (AQP1) MRI reporter gene was generated to label neural connections. The mouse was micro-injected with the virus at the Caudate Putamen (CPU) region and subjected to detection with Diffusion-weighted MRI (DWI). The prominent structure of the CPU-connected network was clearly defined. In combination with a Cre-loxP system, rAAV2-retro expressing Cre-dependent AQP1 provides a CPU-connected network of specific type neurons. Here, we established a sensitive, metal-free MRI-based strategy for in vivo detection of cell type-specific neural connections in the whole brain, which could visualize the dynamic changes of neural networks in rodents and potentially in non-human primates.


Subject(s)
Aquaporin 1 , Dependovirus , Animals , Aquaporin 1/genetics , Aquaporin 1/metabolism , Brain/diagnostic imaging , Brain/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Magnetic Resonance Imaging , Mammals/metabolism , Mice , Technology
6.
Vaccines (Basel) ; 10(5)2022 May 16.
Article in English | MEDLINE | ID: mdl-35632541

ABSTRACT

Virus-like particles (VLPs) are highly immunogenic and versatile subunit vaccines composed of multimeric viral proteins that mimic the whole virus but lack genetic material. Due to the lack of infectivity, VLPs are being developed as safe and effective vaccines against various infectious diseases. In this study, we generated a chimeric VLP-based COVID-19 vaccine stably produced by HEK293T cells. The chimeric VLPs contain the influenza virus A matrix (M1) proteins and the SARS-CoV-2 Wuhan strain spike (S) proteins with a deletion of the polybasic furin cleavage motif and a replacement of the transmembrane and cytoplasmic tail with that of the influenza virus hemagglutinin (HA). These resulting chimeric S-M1 VLPs, displaying S and M1, were observed to be enveloped particles that are heterogeneous in shape and size. The intramuscular vaccination of BALB/c mice in a prime-boost regimen elicited high titers of S-specific IgG and neutralizing antibodies. After immunization and a challenge with SARS-CoV-2 in K18-hACE2 mice, the S-M1 VLP vaccination resulted in a drastic reduction in viremia, as well as a decreased viral load in the lungs and improved survival rates compared to the control mice. Balanced Th1 and Th2 responses of activated S-specific T-cells were observed. Moderate degrees of inflammation and viral RNA in the lungs and brains were observed in the vaccinated group; however, brain lesion scores were less than in the PBS control. Overall, we demonstrate the immunogenicity of a chimeric VLP-based COVID-19 vaccine which confers strong protection against SARS-CoV-2 viremia in mice.

7.
Int J Mol Sci ; 22(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34769416

ABSTRACT

Rabies is a deadly viral disease caused by the rabies virus (RABV), transmitted through a bite of an infected host, resulting in irreversible neurological symptoms and a 100% fatality rate in humans. Despite many aspects describing rabies neuropathogenesis, numerous hypotheses remain unanswered and concealed. Observations obtained from infected primary neurons or mouse brain samples are more relevant to human clinical rabies than permissive cell lines; however, limitations regarding the ethical issue and sample accessibility become a hurdle for discovering new insights into virus-host interplays. To better understand RABV pathogenesis in humans, we generated human-induced pluripotent stem cell (hiPSC)-derived neurons to offer the opportunity for an inimitable study of RABV infection at a molecular level in a pathologically relevant cell type. This study describes the characteristics and detailed proteomic changes of hiPSC-derived neurons in response to RABV infection using LC-MS/MS quantitative analysis. Gene ontology (GO) enrichment of differentially expressed proteins (DEPs) reveals temporal changes of proteins related to metabolic process, immune response, neurotransmitter transport/synaptic vesicle cycle, cytoskeleton organization, and cell stress response, demonstrating fundamental underlying mechanisms of neuropathogenesis in a time-course dependence. Lastly, we highlighted plausible functions of heat shock cognate protein 70 (HSC70 or HSPA8) that might play a pivotal role in regulating RABV replication and pathogenesis. Our findings acquired from this hiPSC-derived neuron platform help to define novel cellular mechanisms during RABV infection, which could be applicable to further studies to widen views of RABV-host interaction.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Proteome/metabolism , Rabies virus/metabolism , Rabies/virology , Cells, Cultured , Host-Pathogen Interactions , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/virology , Neurons/cytology , Neurons/virology , Rabies/metabolism , Rabies virus/isolation & purification , Rabies virus/pathogenicity
8.
Front Vet Sci ; 8: 744276, 2021.
Article in English | MEDLINE | ID: mdl-34568481

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a causative agent of a highly contagious enteric disease in swine of all ages, leading to severe economic losses for the swine industry in many countries. One of the most effective approaches in controlling PEDV infection is vaccination. The ORF3 accessory protein has been proposed as a crucial viral virulence factor in a natural host. However, due to the lack of an extensive comparative study of ORF3, exactly how the ORF3 takes part in virus replication and pathogenesis as well as its role in host-virus interaction is unclear. In this review, we aim to discuss the current knowledge of ORF3 concerning its dispensability for viral replication in vitro, ability to modulate host responses, contribution to virus pathogenicity, and research gaps among ORF3 functional studies. These will be beneficial for further studies to a better understanding of PEDV biology and PEDV vaccine development.

9.
Vaccines (Basel) ; 9(8)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34451975

ABSTRACT

The use of virus-vectored platforms has increasingly gained attention in vaccine development as a means for delivering antigenic genes of interest into target hosts. Here, we describe a single-cycle influenza virus-based SARS-CoV-2 vaccine designated as scPR8-RBD-M2. The vaccine utilizes the chimeric gene encoding 2A peptide-based bicistronic protein cassette of the SARS-CoV-2 receptor-binding domain (RBD) and influenza matrix 2 (M2) protein. The C-terminus of the RBD was designed to link with the cytoplasmic domain of the influenza virus hemagglutinin (HA) to anchor the RBD on the surface of producing cells and virus envelope. The chimeric RBD-M2 gene was incorporated in place of the HA open-reading frame (ORF) between the 3' and 5' UTR of HA gene for the virus rescue in MDCK cells stably expressing HA. The virus was also constructed with the disrupted M2 ORF in segment seven to ensure that M2 from the RBD-M2 was utilized. The chimeric gene was intact and strongly expressed in infected cells upon several passages, suggesting that the antigen was stably maintained in the vaccine candidate. Mice inoculated with scPR8-RBD-M2 via two alternative prime-boost regimens (intranasal-intranasal or intranasal-intramuscular routes) elicited robust mucosal and systemic humoral immune responses and cell-mediated immunity. Notably, we demonstrated that immunized mouse sera exhibited neutralizing activity against pseudotyped viruses bearing SARS-CoV-2 spikes from various variants, albeit with varying potency. Our study warrants further development of a replication-deficient influenza virus as a promising SARS-CoV-2 vaccine candidate.

10.
Viruses ; 13(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-34205958

ABSTRACT

Picornaviruses are non-enveloped, single-stranded RNA viruses that cause highly contagious diseases, such as polio and hand, foot-and-mouth disease (HFMD) in human, and foot-and-mouth disease (FMD) in animals. Reverse genetics and minigenome of picornaviruses mainly depend on in vitro transcription and RNA transfection; however, this approach is inefficient due to the rapid degradation of RNA template. Although DNA-based reverse genetics systems driven by mammalian RNA polymerase I and/or II promoters display the advantage of rescuing the engineered FMDV, the enzymatic functions are restricted in the nuclear compartment. To overcome these limitations, we successfully established a novel DNA-based vector, namely pKLS3, an FMDV minigenome containing the minimum cis-acting elements of FMDV essential for intracytoplasmic transcription and translation of a foreign gene. A combination of pKLS3 minigenome and the helper plasmids yielded the efficient production of uncapped-green florescent protein (GFP) mRNA visualized in the transfected cells. We have demonstrated the application of the pKLS3 for cell-based antiviral drug screening. Not only is the DNA-based FMDV minigenome system useful for the FMDV research and development but it could be implemented for generating other picornavirus minigenomes. Additionally, the prospective applications of this viral minigenome system as a vector for DNA and mRNA vaccines are also discussed.


Subject(s)
Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease/virology , Gene Expression Regulation, Viral , Genome, Viral , Plasmids/genetics , RNA, Messenger/genetics , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cell Line , Foot-and-Mouth Disease/drug therapy , Foot-and-Mouth Disease Virus/drug effects , Gene Order , Humans , Models, Molecular , Molecular Structure , RNA, Messenger/chemistry , Structure-Activity Relationship , Transfection , Virus Replication/drug effects
11.
Pathogens ; 9(5)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423021

ABSTRACT

The Open Reading Frame 3 (ORF3), an accessory protein of porcine epidemic diarrhea virus (PEDV), has been shown to interact with a myriad of cellular proteins, among which include the IκB kinase ß (IKBKB). Here, specific IKBKB domains responsible for ORF3-IKBKB interaction were identified. Dysregulation of NF-kB and Type I interferon (IFN) in the presence of ORF3 was also demonstrated. We showed that while ORF3 was capable of up-regulating IKBKB-meditated NF-κB promoter activity, it surprisingly down-regulated the activation of IKBKB-meditated IFN-ß promoter and expression of IFN-ß mRNA. When overexpressed, ORF3 could suppress Poly I:C mediated type I IFN production and induction. Finally, we demonstrated that IKBKB- and RIG-I-mediated type I IFN induction by ORF3 resulted in different outcomes. Our study is the first to demonstrate the potential and complex roles of ORF3 in the involvement of aberrant immune signaling as well as in the virus-host interaction.

12.
Data Brief ; 27: 104603, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31656839

ABSTRACT

Generation of stable cell lines is a widely used technique for continuous recombinant protein production. Advantages of the constitutive stable over the transient protein expression are uniformity of the expression across cell populations as well as high quantity and consistency of the protein yields. This data describe step-by-step procedure for the production of glycoprotein without a transmembrane domain (GΔTM) of bovine ephemeral fever virus (BEFV) by mammalian stable cells. LentiX-293T cells were transfected with four plasmid constructs to generate a recombinant lentivirus. Subsequently, 293T cells were transduced by the recombinant virus and the polyclonal stable cell pools were then selected by puromycin. Next, limiting dilution was performed from each cell pool to isolate the monoclonal stable cells expressing GΔTM protein. Western blot analysis showed that all monoclonal cell clones could stably express GΔTM protein. The data confirms that the stable 293T cell line expressing the secretory GΔTM protein is an attractive platform for antigen production.

13.
Vet Microbiol ; 233: 113-117, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31176396

ABSTRACT

Bovine ephemeral fever virus (BEFV) causes an acute febrile disease in cattle and water buffalo. The disease has an impact on dairy and beef production in tropical and subtropical countries. Vaccination is used for disease prevention and control. In this study, we developed a recombinant lentivirus to produce mammalian stable cells expressing histidine-tagged BEFV G protein with a deleted transmembrane domain (GΔTM) as a secretory protein. In addition, guinea pigs were immunised with the purified GΔTM protein and booster immunised at a 3-week interval. The mammalian stable cells were able to continuously produce GΔTM protein for a minimum of 25 passages. All of the mammalian stable cells expressing GΔTM protein could react specifically with a BEFV convalescent bovine serum. Serum samples from the immunised guinea pigs could react strongly and specifically with the purified GΔTM protein. Moreover, post-immunised guinea pig sera contained antibodies that could neutralise BEFV. These results indicate that the G protein without a transmembrane domain can be used as a subunit vaccine for the prevention and control of BEFV. The availability of the mammalian stable cells, which constitutively express GΔTM protein, could facilitate the potential use of the secretory protein for BEFV diagnosis and vaccine development.


Subject(s)
Antibodies, Viral/blood , Ephemeral Fever/prevention & control , Glycoproteins/genetics , Glycoproteins/immunology , Immunogenicity, Vaccine , Viral Proteins/genetics , Viral Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Cattle , Cell Line , Ephemeral Fever/immunology , Ephemeral Fever Virus, Bovine , Female , Guinea Pigs , HEK293 Cells , Humans , Transfection , Vaccination , Viral Vaccines/immunology
14.
Viruses ; 11(4)2019 04 24.
Article in English | MEDLINE | ID: mdl-31022991

ABSTRACT

The accessory protein ORF3 of porcine epidemic diarrhea virus (PEDV) has been proposed to play a key role in virus replication. However, our understanding of its function regarding virus and host interaction is still limited. In this study, we employed immunoprecipitation and mass spectrometry to screen for cellular interacting partners of ORF3. Gene ontology analysis of the host interactome highlighted the involvement of ORF3 in endosomal and immune signaling pathways. Among the identified ORF3-interacting proteins, the vacuolar protein-sorting-associated protein 36 (VPS36) was assessed for its role in PEDV replication. VPS36 was found to interact with ORF3 regardless of its GLUE domain. As a result of VPS36-ORF3 interaction, PEDV replication was substantially suppressed in cells overexpressing VPS36. Interestingly, the ORF3 protein expression was diminished in VPS36-overexpressing cells, an effect that could not be restored by treatment of lysosomal inhibitors. In addition, disruption of endogenously-expressed VPS36 by siRNA could partially augment PEDV replication. Taken together, our study provides mechanistic insights into the contribution of ORF3 in PEDV replication.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Host Microbial Interactions , Porcine epidemic diarrhea virus/genetics , Viral Proteins/genetics , Virus Replication , Animals , Endosomal Sorting Complexes Required for Transport/genetics , HEK293 Cells , Humans , Swine , Swine Diseases/virology
15.
Viruses ; 11(3)2019 03 20.
Article in English | MEDLINE | ID: mdl-30897856

ABSTRACT

While porcine epidemic diarrhea virus (PEDV) infects and replicates in enterocytes lining villi of neonatal piglets with high efficiency, naturally isolated variants typically grow poorly in established cell lines, unless adapted by multiple passages. Cells infected with most cell-adapted PEDVs usually displayed large syncytia, a process triggered by the spike protein (S). To identify amino acids responsible for S-mediated syncytium formation, we constructed and characterized chimeric S proteins of the cell-adapted variant, YN144, in which the receptor binding domain (RBD) and S1/S2 cleavage site were replaced with those of a poorly culturable field isolate (G2). We demonstrated that the RBD, not the S1/S2 cleavage site, is critical for syncytium formation mediated by chimeric S proteins. Further mutational analyses revealed that a single mutation at the amino acid residue position 672 (V672F) could enable the chimeric S with the entire RBD derived from the G2 strain to trigger large syncytia. Moreover, recombinant PEDV viruses bearing S of the G2 strain with the single V672F substitution could induce extensive syncytium formation and replicate efficiently in VeroE6 cells stably expressing porcine aminopeptidase N (VeroE6-APN). Interestingly, we also demonstrated that while the V672F mutation is critical for the syncytium formation in VeroE6-APN cells, it exerts a minimal effect in Huh-7 cells, thereby suggesting the difference in receptor preference of PEDV among host cells.


Subject(s)
Mutation , Porcine epidemic diarrhea virus/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Replication/genetics , Amino Acid Substitution , Animals , Cell Fusion , Chlorocebus aethiops , Porcine epidemic diarrhea virus/isolation & purification , Swine , Swine Diseases/virology , Vero Cells
16.
Viruses ; 10(8)2018 07 28.
Article in English | MEDLINE | ID: mdl-30060558

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) is an important swine pathogen responsible for severe watery diarrhea, particularly in neonatal piglets. Despite extensive studies performed to elucidate the function of several viral proteins, the contribution of an accessory protein ORF3 in PEDV replication is still largely unknown. Here, we constructed expression plasmids as well as recombinant PEDV carrying myc-tagged ORF3 to assess their expression and subcellular localization in both transfected and infected cells. In PEDV-infected cells, ORF3 was predominantly localized in the cytoplasm, partially in the endoplasmic reticulum (ER) and the Golgi apparatus (Golgi). Interestingly, ORF3 with the N-terminal Flag tag was also detected on the cell surface concomitant with the spike (S) protein as determined by flow cytometry and confocal microscopy. ORF3 and S proteins were also co-localized at perinuclear compartments and in the vesicle-like structures in transfected and infected cells. We also demonstrated that both full-length and naturally truncated ORF3 proteins could interact with the S protein but with different binding affinity, which correlate with the ability of the protein to regulate virus replication in cell culture. Collectively, our results underscore the unprecedented role of the ORF3, which involves the interaction of ORF3 with S and, possibly, other structural protein during PEDV replication.


Subject(s)
Porcine epidemic diarrhea virus/physiology , Spike Glycoprotein, Coronavirus/physiology , Viral Regulatory and Accessory Proteins/physiology , Virus Replication , Animals , Chlorocebus aethiops , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Cytoplasm/chemistry , Cytoplasm/virology , DNA Replication , Diarrhea/veterinary , Diarrhea/virology , HEK293 Cells , Humans , Microscopy, Confocal , Plasmids/genetics , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/pathogenicity , Protein Binding , Spike Glycoprotein, Coronavirus/genetics , Swine , Swine Diseases/virology , Transfection , Vero Cells , Viral Regulatory and Accessory Proteins/genetics
17.
Proc Natl Acad Sci U S A ; 114(42): 11217-11222, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28874549

ABSTRACT

North American wild birds are an important reservoir of influenza A viruses, yet the potential of viruses in this reservoir to transmit and cause disease in mammals is not well understood. Our surveillance of avian influenza viruses (AIVs) at Delaware Bay, USA, revealed a group of similar H1N1 AIVs isolated in 2009, some of which were airborne-transmissible in the ferret model without prior adaptation. Comparison of the genomes of these viruses revealed genetic markers of airborne transmissibility in the Polymerase Basic 2 (PB2), PB1, PB1-F2, Polymerase Acidic-X (PA-X), Nonstructural Protein 1 (NS1), and Nuclear Export Protein (NEP) genes. We studied the role of NS1 in airborne transmission and found that NS1 mutants that were not airborne-transmissible caused limited tissue pathology in the upper respiratory tract (URT). Viral maturation was also delayed, evident as strong intranuclear staining and little virus at the mucosa. Our study of this naturally occurring constellation of genetic markers has provided insights into the poorly understood phenomenon of AIV airborne transmissibility by revealing a role for NS1 and characteristics of viral replication in the URT that were associated with airborne transmission. The transmissibility of these viruses further highlights the pandemic potential of AIVs in the wild bird reservoir and the need to maintain surveillance.


Subject(s)
Charadriiformes/virology , Influenza A Virus, H1N1 Subtype/pathogenicity , Orthomyxoviridae Infections/transmission , Animals , Chick Embryo , Disease Vectors , Ferrets , Influenza A Virus, H1N1 Subtype/genetics , Male , Respiratory System/virology , Virus Replication
18.
Arch Virol ; 162(1): 45-55, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27664027

ABSTRACT

Nonstructural protein 1 (NS1) is a multifunctional protein that is a viral replication enhancer and virulence factor. In this study, we investigated the effect of the amino acid substitution G45R on the NS1 of A/Puerto Rico/8/1934 (H1N1) (G45R/NS1) on viral virulence and host gene expression in a mouse model and the human lung cell line A549. The G45R/NS1 virus had increased virulence by inducing an earlier and robust proinflammatory cytokine response in mice. Mice infected with the G45R/NS1 virus lost more body weight and had lower survival rates than mice infected with the wild type (WT/NS1) virus. Replication of the G45R/NS1 virus was higher than that of the WT/NS1 virus in vitro, but the replication of both viruses was similar in mouse lungs. In A549 cells, the majority of G45R/NS1 protein was localized in the cytoplasm whereas the majority of WT/NS1 protein was localized in the nucleus. Microarray analysis revealed that A549 cells infected with the G45R/NS1 virus had higher expression of genes encoding proteins associated with the innate immune response and cytokine activity than cells infected with the WT/NS1 virus. These data agree with cytokine production observed in mouse lungs. Our findings suggest that G45R on NS1 protein contributes to viral virulence by increasing the expression of inflammatory cytokines early in infection.


Subject(s)
Cytokines/metabolism , Host-Pathogen Interactions , Influenza A Virus, H1N1 Subtype/pathogenicity , Mutation, Missense , Viral Nonstructural Proteins/genetics , Virulence Factors/genetics , Animals , Body Weight , Cell Line , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/virology , Female , Gene Expression Profiling , Humans , Immunologic Factors/biosynthesis , Lung/virology , Mice, Inbred BALB C , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Survival Analysis , Viral Load , Virulence , Virus Replication
19.
Virol J ; 13: 127, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27405392

ABSTRACT

BACKGROUND: The nonstructural protein 1 (NS1) of influenza A viruses can act as a viral replication enhancer by antagonizing type I interferon (IFN) induction and response in infected cells. We previously reported that A/Puerto Rico/8/1934 (H1N1) (PR8) containing the NS1 gene derived from A/swine/IA/15/1930 (H1N1) (IA30) replicated more efficiently than the wild type virus. Here, we identified amino acids in NS1 critical for enhancing viral replication. METHODS: To identify a key amino acid in NS1 which can increase the virus replication, growth kinetics of PR8 viruses encoding single mutation in NS1 were compared in A549 cells. NS1 mutant functions were studied using dsRNA-protein pull down, RIG-I mediated IFNß-promoter activity assays and growth curve analysis in murine lung epithelial type I (Let1) cells. RESULTS: The G45R mutation in the NS1 of PR8 (G45R/NS1) virus is critical for the enhanced viral replication in A549 cells. G45R/NS1 slightly decreased NS1 binding to dsRNA but did not interfere with its suppression of RIG-I-mediated type I IFN production. Likewise, replication of G45R/NS1 virus was increased in comparison to wild type virus in both wild type and type I interferon receptor null Let1 cells. CONCLUSIONS: The non-conserved amino acid, R45, enhances viral replication which is apparently independent of dsRNA binding and suppression of type I IFN, suggesting a non-characterized function of NS1 for the enhanced viral replication. As G45R/NS1 virus induced the type I IFN induction and response in infected A549 cells, it is also interesting to investigate virus virulence for further studies.


Subject(s)
Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/metabolism , Interferon-beta/metabolism , Mutation, Missense , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , Viral Nonstructural Proteins/chemistry , Virus Replication , Amino Acid Motifs , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/genetics , Influenza, Human/virology , Interferon-beta/genetics , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...